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FOREWORD 

The work on this contract in the period of October 1, 1960, through 
March 31, 1963, is covered by Interim Engineering Report No. 1 . Subse- 
quent work is covered in this report.  While this report may be read 
independently of the Interim Engineering Report, a full appreciation of 
the experiment can be had only by reading both reports. 

J. M. Hammer 
J. J. Thomas 
B. B. Aubrey 
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INTRODUCTION 

A detailed review of the beam method of finding the recombination 
cross section of Ions, as employed In this program, has been given In 
the Interim Engineering Report No. 1 of the present contract for Research 
on the Volume Recombination of Cesium Ions.-'- The Impetus for this work 
derives from the fact that recombination plays an Important role In the 
operation of most plasma devices.  The rational design of any plasma 
device (e.g., thermionic energy converters, plasma cathodes, plasma 
microwave oscillators, plasma thrustors) relies on accurate knowledge 
of all the significant parameters, including the recombination cross 
section. 

To date, the measurements of recombination have relied on some 
variation on the theme of measuring the time-rate of decay of a plasma. 
Recently the time equilibrium of a synthesized cesium plasma has been 
studied.^  The rate-of-decay and time equilibrium methods measure the 
recombination coefficient in a complex plasma whose constituents are 
not known.  The results have been difficult to interpret and have yielded 
Inconsistent values.  The present program, supported by the U.S. Army 
Transportation Corps, measures the atom current formed as an ion beam 
passes through an electron cloud (recomblner).  Since it is possible to 
mass-analyze the ion beam prior to the interaction, the identity of the 
interacting species can be determined in advance.  Thus, an unambiguous 
value for the recombination cross section can be obtained.  A schematic 
diagram of the method is shown in Figure 1. 

The method has been put into effect without the mass analyzer.  The 
initial measurements do not distinguish directly between atomic and 
molecular ions.  These measurements do, however, show the feasibility 
of the technique and have given tentative upper bounds on the value of 
both the recombination cross section for atomic ions (monomers) and 
for molecular ions (diraers).  The molecular recombination (probably 
dissociative recombination) is distinguished from the atomic recombina- 
tion by varying the percentage admixture of atomic and molecular ions 
through temperature control of the chemical cesium generator which 
feeds the porous tungsten-plug ion source.  The dependence of the 
molecular percentage on the temperature was found by testing the ion 
source in a mass spectrometer external to the apparatus.  A lower bound 
of 8 x lOlO electrons/cm-' for the recomblner electron density has been 
found through the use of a capacitive technique of measuring plasma 
density.  Using this density in conjunction with the preliminary 
measured recombination currents, an upper bound of 5 x lO"-'-^ cm^ (a = 
9.1 x lO'-'-^ cm^/sec) has been found for the atomic recombination cross 
section and 3 x 10"^ cm^ (a = 5.4 x 10"' cm-Vsec) for the molecular 
(dissociative) cross section.  The atomic results are in good agreement 
with the results of Hlnnov and Hirschberg.^ The molecular results are of 
the same order as theoretical predictions for dissociative recombination.-' 
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In the following sections the additions and modifications made to 
the recombination apparatus subsequent to the Issue of Interim Engineer- 
ing Report No. I will be described.  The results of the measurements 
made to date will be presented and discussed.  Recommendations for future 
work In this area are then made. 



THEORY OF METHOD-EXTENSION 

A.  EXTRACTION OF ATOMIC AND MOLECULAR CROSS SECTIONS FROM DATA 

As was shown in the first report, the cross section for recombina- 
tion (QR) can be found by measuring the current of recorabined atoms 
(IR) produced when an ion beam of current I passes through an electron 
"cloud" of effective density Ne and length x.  The relation is 
OR = IR/Io Ne x- 

If the ion beam were to consist of a mixture of atomic and molecular 
ions, the current of recombined atoms (assuming the molecular recombina- 
tion was dissociative) is given by 

ID = I  N QD x + 2 I N 0 x , (1) R   aexR       me in   ' N/ 

where Ia is the atomic-ion current, 
I  is the molecular-ion current, and m ' 
Qm is the dissociative recombination cross section. 

The factor of 2 in the second term takes account of the dissociation of 
each molecular ion into two atoms.  Let Ij,, = 5 Ia and 10 

= Ia + Im- 
Then, if 1^ is measured for two values of 5 (Si and 60) while I  is held 
constant (or 1^ is normalized to constant I0), it is readily shown from 
(1) that 

52 (1 -f h)   IRi - 51 (1 + 62) Ip2 

QR = Ne Io x (62 - &1) ™ 

(1 +  h)   IRi - (1 + 52) 1^ 

^m =    2 N  I x (6, - 6„)     ' (3) 

e o    1   2 

Thus, by controlling the percentage of molecular ions, both the atomic 
and molecular recombination cross sections can be obtained from equations 
(2) and (3). 

B.  CAPACITIVE METHOD OF FINDING A LOWER BOUND ON THE RECOMBINER 
ELECTRON DENSITY         ' "  

As has been pointed out by Ash and Gabor,  a lower bound on the 
electron density in the recombiner may be obtained by measuring the 
change in capacitance between a probe and the recombiner as an ion 
sheath is formed around the probe when the probe is made negative with 
respect to the plasma.  For frequencies well below the electron plasma 
frequency, the plasma may be considered a good conductor.  Thus, the 
capacitance between the probe and the plasma when a sheath is formed is 



close to that which would be measured between the probe and a conductor 
located a sheath thickness away.  In the recombination experiment, it 
is desirable to measure the recombiner density while the ion beam is 
operating.  To do this the aperture plates are used as probes (see Figure 
2).  The effective area for the aperture plates when used as capacitive 
probes is taken to be the cross-sectional area of the recombiner cathode. 
If d is the diameter of the cathode, the effective area, A, is 2(jtd2/4) 
for the two aperture plates connected in parallel.  If there is no plasma 
present, the capacitance between the aperture plates and the recombiner 
is C^ = « A/S.  Here S is the separation between the aperture and the 
recombiner and «0 the permittivity of free space.  With a plasma present 
and a sheath formed, the effective separation is reduced to the sheath 
thickness, which can be no less than one Debye length, X—.  Thus, the 
new capacitance is at most Cj   =  «0A/XD.  The change in capacitance, AC , 
when the plasma is turned on is C2-C^ and 

^'o^i"?) • </+> 
7    1/2 

If the Debye length, («0 kT/2 Ne e )   , is substituted in (4), one 
obtains 

t     kT 
Ne^2 2^2   ^2+~r-2 <5> 2 e A c 2 e  S o 

Thus, by measuring the change in capacitance between the two aperture 
plates and the recombiner cathode as a sheath is formed by making the 
apertures negative, one may apply equation (5) to find a lower bound on 
the electron density in the recombiner. 



THE RECOMBINER 

The recombiner in Its present form Is Illustrated in Figure 2. 
Electrons are emitted from the heated L-cathode and are partially neu- 
tralized by positive barium and cesium ions.  The cesium ions are formed 
by the surface ionization of background cesium atoms on those areas of 
the tungsten cathode that are not covered by barium. When the L-cathode 
is operated below the optimum temperature for the emission of electrons, 
substantial areas of tungsten remain uncovered.  As a result, the plasma        t 
properties of the recombiner are optimized at approximately 900oC. This 
may be compared to the 1050-1100oC necessary for best electron emission. 
Because the background cesium pressure is increased when the ion gun is 
operated, as compared with the situation when the ion gun is cold, it is 
necessary to measure the electron density with the ion beam operating. 
This has been done by the capacitlve method described earlier in this 
report.  A plot of AC versus the negative voltage applied to the apertures 
through a 300-K.ß dropping resistor is given in Figure 3.  Because the 
apertures are heated by the cathode and emit electrons, the actual 
retarding voltage between cathode and aperture is only a small fraction 
of the applied voltage.  The larger part of the voltage Is dropped in 
the 300-Kn resistor. 

In a typical plot, AC is zero until the applied voltage is suffi- 
ciently negative to form a sheath.  At this value, AC Increases suddenly 
to its peak value.  Further increase in the negative voltage causes the 
sheath to increase in size and AC drops.  The highest value of AC (16.3 
x 10"12 farad) occurs at Tc = 900

oC.  Using this value of AC in equation 
(5)j a lower bound of 8 x 10^ electrons/cm^ is found for the recombiner 
electron density.  When the ion beam is shut off, a similar measurement 
gives a AC of 5 x lO"" farad and hence a lower bound of 7.5 x 10^ elec- 
trons/cm3.  This clearly demonstrates the role played by the background 
cesium in setting the plasma conditions in the recombiner. 

When recombination measurements are made, the electron plasma is 
turned off by applying an axial magnetic field of approximately 100 
oersteds to the recombiner.  The field is produced by two coaxially 
wound coils of high-temperature ceramic-insulated copper wire.  The coils 
are connected so that their fields add in order to turn off the elec- 
trons and so that their fields oppose when the plasma Is to be on. 
Switching is done in this manner so that there will be no change in coil 
temperature, hence, no possible change in background pressure in going 
from the off to the on position and vice versa. 

Provisions have been made^ although not yet tested, to measure the 
recombiner electron density by use of the electron-beam-plasma inter- 
action.5-8 Helices capable of coupling rf energy to and from an elec- 
tron beam over a range of frequencies in the 2 to 4-Gc band have been 
placed before and after the recombiner.  The ion gun is capable of being 
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operated as an electron gun.  Thus, an electron beam can be modulated 
by the first helix, interact with the plasma in the recombiner, and be 
detected by the second helix.  If the electron beam is modulated near 
the plasma frequency (<xi~  = e^Ne/m «0), the signal on the beam will be 
amplified by the plasma.  Thus, by observing the frequency which 
maximizes the difference in transmission between the case of the plasma 
on and the case of the plasma off, the electron density may be obtained. 
The electron density can change when the ion beam is turned off and the 
electron beam on, despite the fact that the cesium-source conditions 
need not be altered to convert from ion to electron emission.  To over- 
come any such variation, fast pulsing techniques may be employed.  Then 
the plasma frequency measurement can be made before the plasma has had 
time to undergo appreciable change. 



THE ION SOURCE 

■ 

As was indicated in the first report, the cesium alumino-silicate 
ion source proved to be insufficient in stability and emission.  In its 
place, a porous tungsten-plug type of ion source fed by a chemical 
generator of neutral cesium has been developed and used.  The ion source 
is illustrated in Figure 4.  Neutral cesium is generated when the mixture 
of one part cesium chromate and two parts silicon is heated to the 
vicinity of 750oC by the generator heater.  The cesium passes the quartz ( 
wool-tungsten wool "filter" and is ionized by resonance ionization in 
going through the porous tungsten plug, which is heated to the neighbor- 
hood of 1000oC by the plug heater.  The heat sinks and length of tubing 
connecting the generator to the tungsten plug provide thermal Isolation. 
This arrangement allows independent control of the neutral cesium pres- 
sure via control of the generator heater and of the plug temperature 
through control of the plug heater.  The temperature of the plug sets 
the temperature of the neutral cesium gas in the vicinity of the plug. 
After the generator has been operated for even a few minutes, there is 
a supply of metallic cesium sufficient to operate the ion source for 
a few hours without further operation of the generator heater.  This 
structure provides a copious (greater than 1 ma/cm ) and stable supply 
of cesium ions.  The ion gun incorporating the porous plug ion source 
is shown In Figure 5.  The ion optics has not been changed from that 
used in the gun which employed the silicate type of ton source.  At a 
beam voltage of 5 kV, over one microampere of ion current has been 
focused with less than 2 x 10"^ microamperes of interception on the 
recomblner apertures.  Typical voltages applied to the present ion gun 
are V1 = 5 kV, V2 = 4.4 kV, V3 = 0.5 kV, V4 = 2.7 kV, and V5 = 0 (ground). 

Mass spectrometer tests have been made on the porous plug cesium 
ion source.  The tests were performed by J. R. Woolston and E. M. Botnick 
of RCA Laboratories using an M.S.-7 mass spectrograph.  As can be seen 
in Table 1, the source has reasonably high purity.  The relatively large 
admixture of the dimer Csi" (18 parts per million) when the generator is 
at a high temperature as compared with the case when the generator is 
cool (< 0.4 parts per million) can be readily understood.  The formation 
of Cs2 will be a function of the cesium pressure (and hence of the 
generator temperature) on the interior of the source.  The greater the 
pressure, the greater will be the percentage of neutral cesium molecules 
which impinge on the porous tungsten plug.  A fixed small percentage of 
the CS2 will ionize to become Cs^.  The greatest portion of the dimer 
will, however, dissociate upon contact with the heated high-work-function 
surface, since the dissociation energy of CS2 is approximately 0.45 eV 
while its ionization energy is 3.25 eV.    The fact that the yield of 
the cesium molecular ion can be varied by more than a factor of 40 through 
control of the generator temperature allows both the molecular and atomic 
recombination to be estimated through the use of equations (2) and (3). 

10 
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TABLE 1 . 

ANALYSIS OF CESIUM ION SOURCE 

Cesium Ions (Heater Current at 0.0) 

ppm* 

C82
+         <0.4" 

Cs20
+        <0.4 

Cesium Ions (Heater Current at 2.0 - 3.0 amps) 

ppm 

CS2+        18.0 

CS20+         1.3 

Other Ions in Mass Spectrum (Heater Current at 2.0 amps) 

M/e   Identification    ppm M/e   Identification   ppm 

12        C             0.3 52        Cr           3 

14        N             0.2 55        Mn            3 

16        0             2 56        Fe          30 

18        H20           1 58        Ni            0.3 

20        Ca2?          1 64        Zn?           0,2 

23 Na           20 

24 Mg          200 

70 ) 
Not Ge?        1 

72 

27        Al         1500 85        Rb**       3000 

28        Si            3 88        Sr            2 

39        K**        1200 98        Mo           40 

40        Ca           50 114        Cd           30 

42 j 138        Ba           10 

43 j   Hydrocarbons?   1 each ~155         ?            1 

44 1 184        W            10 

48        Ti            1 210        W0            3 

51        V             0.3 

* Average values in parts per million (Cs+ taken as unity). 

** The rather large concentrations of K and Rb are attributed 
by Woolston to the fact that, just prior to the analysis of 
the recombination source, he had made thermal analyses of 
K and Rb.  Apparently, the speccrograph takes a rather long 
time to "forget" previous analyses. 

13 



The molecular yield of 18 parts per million can provide a molecular-ion 
beam of sufficient intensity to allow a future direct measurement of the 
very large dissociative recombination cross section.  For this purpose, 
the atomic ions will be separated from the molecular ions by a mass 
analyzer internal to the apparatus as Indicated in Figure 1. 

14 



EXPERIMENTAL METHOD AND RESULTS 

The method of taking data Is extremely Important since It Is neces- 
sary to avoid the recording of signals which may result from spurious 
effects.  High-energy neutral atoms are produced by exchange between the 
Ions and the background gas In the apparatus.. ThuSj in order to observe 
the recombination, one must curn the recomblner on and off and observe 
the change In the neutral atom current reaching the detector.  If, how- 
ever, the turning on and off of the recomblner by means of the magnetic 
field affects the background pressure in the apparatus, a change In 
neutral current will be produced because of the Ion exchange Interaction. 
Fortunately, the detector, which relies on the production of secondary 
electrons by the Impact of the energetic atoms with the copper beryllium 
first dynode of an electron multiplier, is insensitive to low-energy 
neutral background current. 

To demonstrate that the observed change in signal is indeed due to 
recombination, a number of subsidiary tests are made.  The approach will 
perhaps be clearest if a sequential description of a typical run is given. 

The apparatus is assembled and evacuated.  It is then carefully 
leak-checked and pumped to a good vacuum.  The system is then baked at 
400oC for at least three hours and is pumped until the pressure reaches 
the low 10"' mm Hg range.  Thereupon, the recomblner cathode is activated 
in the conventional way.  The magnet coils are operated with more than 
normal operating current so that they are fully degassed.  For the same 
reason, the porous-plug heater and then the generator heater are also 
operated at levels somewhat above the normal operating range.  Finally, 
all the heaters and the magnet coil are operated simultaneously at high 
temperature until the pressure in the system is below 5 x 10"^ mm Hg. 
The temperatures are then readjusted to the desired values and tests 
can begin. 

At this point, the ion beam is focused so that the interception on 
the apertures Is minimized (less than 2 x 10"^ microamperes).  Because 
of electron current flow between the apertures and cathode of the hot 
recomblner, it is necessary to check the focus of the ion beam with the 
recomblner cold.  The deflector and suppressor voltages are applied so 
that the ion beam is collected in the ion collector.  Under these condi- 
tions (recomblner cold), the multiplier output and the ion collector 
current are observed as the magnet coll is turned on and off (recollect 
that this is done by alternately connecting the coils so that their 
fields add and then oppose—thus the coll temperature is not affected). 
Under conditions of optimum ion beam focus, no change in the multiplier 
output is observed as the magnet is turned on and off with the recom- 
blner cold. 

15 



Following this test, the recombiner is heated to the desired oper- 
ating temperature (900oC) and the ion beam is turned off in two ways: 
.by turning off the porous-plug heater and by turning off the high-voltage 
supply (porous-plug heater on).  For each of these conditions, the magnet 
coil is turned on and off and the multiplier output checked.  In neither 
case is any change observed in the output. 

Finally, the ion beam is turned on and reset to its condition of 
optimum focus (a master switch allows the ion beam to be turned on and 
off without disturbing the voltage settings).  With the recombiner 
cathode heated, both the multiplier output and the ion collector current 
(I0) are observed as the recombiner magnet coil is once again turned on 
and off.  In this last case, no change is observed in I0, but an increase 
Is observed in the multiplier output when the recombiner is in the on 
condition (magnet field zero).  The results of the tests just described 
are summarized in Table 2. 

It Is clear from Table 2 that no signal is obtained unless the ion 
beam and the recombiner are operating.  This latter, taken in conjunc- 
tion with the constancy of the current to the ion collector, provides 
very strong evidence that the effect being observed as the recombiner 
magnet field is turned on and off is due to recombination. 

TABLE 2 

SUMMARY OF TESTS MADE TO CHECK FOR SPURIOUS SIGNAL. 
DEFLECTING VOLTAGE IS ON FOR ALT, CONDITIONS. 

Condition 
Recombiner 

Ion Gun Change as magnetic field 
goes from on to off? 

Heater High 
Voltage 

Heater Ion   Multiplier 
Current   Output 

A OFF OFF OFF NO        NO 

B OFF ON ON NO        NO 

C ON OFF OFF NO        NO 

D ON ON OFF NO        NO 

E ON OFF ON NO        NO 

F ON ON ON NO     INCREASES 

16 



To actually take data, a number of on-off trials are made and the 
average change In the multiplier output is obtained.  The nominal multi- 
plier sensitivity is found by allowing the ion beam, reduced in current 
to a value which will not saturate the multiplier, to impinge directly 
on the first dynode.  The gain is then the ratio of the multiplier output 
to the ion current input.  For the present, it is assumed that the gain 
for atoms will be the same as for ions.  (See pages 15 and 16 of the 
Interim Engineering Report No. 1.   The calibration techniques mentioned 
there have not as yet been incorporated in the apparatus.)  Using the 
"gain", the current of fe'combined atoms IR can be obtained from the data. 
For.convenience of computation, the various values of IJJ are normalized 
to a common value of ion beam current (l|j.amp) .  The data on recombination 
that have been obtained to date are given in Table 3.  They represent 
the results of preliminary measurements.  It is expected that many 
additional measurements over a wide range of operating conditions will 
be made in subsequent months. 

TABLE 3  . 

CESIUM RECOMBINATION DATA AND RESULTS 

No. of on-  Cesium Generator 
off Readings  Heater Current 

Exchange Current    Recombination      , 
Current for Ii-lua , * ex

i. 1     (Percent) I or Ij-l|ia 
(Amperes) (Amperes) 

2/21/63 

2/22/63 

2/25/63 

2/26/63 

2/26/63 

2/26/63 

10 

12 

8 

12 

13 

12 

0.0 

2.0 

0.0 

0.0 

2.0 

2.0 

15.9   x   10 

18.5  x  10 

4.5  x  10 

18.4  x  10 

13.0 x  10 

11.1 x  10 

-13 

-13 

-13 

■13 

■13 

-13 

7.3 x 10 

15.5  x  10 

4.7   x  10 

7.4 x 10 

13.8 x 10 

21.8  x  10 

■14 

-14 

•14 

■14 

-14 

•14 

4.6 

8.4 

10.4 

4.0 

10.6 

19.8 

Average  Values 

Cesium Generator Average   Values   of 
Heater  Current        Ij.   for   1^   "   lya/Araps. 

0.0 

2.0 

6.44 x 10 

17.0 x 10 

■14 

• 14 

Ratio of Molecular to 
Atomic Current - 5 

0.4 x 10"6 

1.8 x lO"5 

From equation (2) and (3) and using the peak value of Ne > 8 x 10 

given In the recomblner section with x = 1.52 cm, 

10 electrons/cm as 

Atomic Recombination    QR < 5 x 10'19 cm2,   aR < 9.1 x 10    cm
3/sec 

Molecular Recombination Qm < 3 x 10"
14 cm2,  a^ <  5.4 x 10"7 cm3/sec. 
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DISCUSSION 

Perhaps the most Important result which has thus far been achieved 
Is the demonstration that the beam method of measuring recombination 
has sufficient sensitivity to do just that.  With no ion beam current 
flowing, the output of the multiplier (dark current) has been reduced 
to values which are at least an order of magnitude below the exchange 
current. Thus, the chief source of noise is the current due to exchange. 
Since, as can readily be seen in Table 3, the recombination current Is 
around 10 percent of the exchange current, little difficulty has been 
encountered in making the measurement.  This favorable situation can be 
attributed largely to the comparatively high electron densities achieved 
in the recombiner.  Since the electron density is obtained by creating 
what is probably a partially neutralized plasma, the effect of the 
plasma ions on the experiment must be considered.  The fast cesium ions 
can undergo a number of different types of collisions in passing through 
the recombiner.  The coulomb collisions (elastic) between the fast ions 
and the plasma electrons can have no effect on the experiment; the elec- 
tron can impart very little momentum to the ions (energy transfer going 
as M/m), and those electrons which receive large momentum cannot pass 
the deflecting plates to reach the multiplier.  The elastic collisions 
between fast and slow ions can impart relatively high transverse veloci- 
ties to the particles involved.  The aperture geometry is, however, 
arranged to prevent ions originating in or passing through the recombiner 
from traversing the deflecting plates and reaching the multiplier as long 
as the deflecting voltage is on.  Thus, the only effect of elastic ion- 
ion collisions will be to add a small noise component, similar to parti- 
tion noise, to the ion current.  Inelastic ion-ion and ion-neutral atom 
collisions other than exchange can possibly result in radiation of high 
enough frequency to cause photoemlssion from the multiplier dynode.  It 
should be recalled that we deal with an electron multiplier, not a 
photomultiplier.  The photoelectric work function of the copper-beryllium 
first dynode is of the order of 4.0 volts.  It would be unusual if the 
quantum efficiency of this surface were greater than 10"-' even for wave- 
lengths well above the threshold.  This is compared with the 3 electrons 
per incoming 6-kV cesium ion which the dynode provides (see Interim 
Report No. 1).  Thus, it is very conservative to say that only inelastic 
collisions which result in quanta of energy greater than 4 eV (wave- 
lengths less than approximately 3,100 A) and which have cross sections 
greater than 103 QJJ Ne/Nu can make significant contributions to the 
signal.  Here Nu is the density of the ions or atoms with which the fast 
ion (ion beam) makes an inelastic collision. 

At a pressure of 5 x 10"^ mm Hg, the density of neutral atoms will 
be 2 x 10^.  Thus, the cross section for excitation required to cause a 
significant error in the result is 8 x 10^ cm^.  Excitation cross sections 
to a particular level are vsually^-1 of the order of 10"18 cm2.  Thus, the 
radiation from fast ion-neutral atom collisions can be Ignored. 

18 



Based on the results of the plasma density measurements^ the dominant 
ion which helps to neutralize the space charge In the recombiner is Cg. 
If we assume that the density of C+ is the same as the electron density 
(it is more likely that the recombiner is only partially neutralized), it 
would still be required that the excitation of the C8 II lines by impact 
between Cg ions have a cross section greater than 5 x 10" " cm , and this 
is exceedingly unlikely.  Finally, all the production of radiation by 
radiative recombination between the plasma electrons and the slow cesium 
ions can result only in quanta with energies below 4 eV.  No photoelectrons 
can thus be produced by this latter radiation.  As a result of these con- 
siderations, it seems unlikely that the presence of a partially neutralized 
electron plasma rather than an electron cloud in the recombiner has any 
significant adverse effect on the beam method of measuring recombination. 

The actual results obtained are not considered to be definitive values 
since a relatively small number of runs have been made and the calibration 
procedures are not complete.  Thus, it is not yet proper to make detailed 
comparisons with either theory or other experiments.  Nonetheless, it is 
very heartening that the value found as an upper bound for the atomic 
recombination agrees to within a factor of two with the values given by 
Hinnov and Hirschberg.   This, of course, implies that a two-electron 
one-ion three-body type of recombination plays an important role.  Similarly, 
we are encouraged by finding order-of-magnltude agreement between the 
limiting value of the dissociative recombination measured here and the 
results of Bates' theory  (which, in turn, agrees with certain microwave 
measurements; see Interim Report No. 1 for a detailed review.).  The 
error Is probably rather high In the value obtained here for the molecu- 
lar recombination, since the technique depends strongly on knowledge of 
the proportion of ions; yet this proportion was calibrated external to 
the apparatus. 
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CONCLUSION 

The beam technique of measuring cesium recombination has been 
demonstrated to work, and Initial measurements of upper bounds on the 
cross sections for both the atomic and the molecular (dissociative) 
recombination have been found.  The atomic cross section Is less than 
or equal to 5 x 10"1" cnr, and the molecular cross section Is leas than 
or equal to 3 x 10"^ cm2.  These are the first direct measurements of 
recombination cross sections ever made. 
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RECOMMENDATIONS FOR FURTHER WOBX 

The following are recommendations for further work: 

1. Continuation of Data Taking 

2. Calibration of Atom Detector 

A technique of using charge exchange either by passing an Ion beam 
through a thin foil or by reflecting ions from a surface at a grazing 
angle of incidence should be applied to calibrate the atom detector. 

3. Measurement of Recombiner Electron Density 

An attempt to apply the electron-beam-plasma interaction to the 
measurement of the electron density in the recombiner should be made. 
The results can be compared with the results of the capacltlve technique 
already employed. 

4. Separation and Identification of the Ion Species Actually Undergoing 
Recombination 

When the calibration techniques have been well established, a mass 
spectrometer section should be added to the apparatus ahead of the 
recombiner.  Measurements on the atomic and the molecular (dissociative) 
recombination cross sections can then be made with full knowledge of the 
indentity of the particular species being investigated. 
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